Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.431
Filtrar
1.
Science ; 383(6690): 1441-1448, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547292

RESUMO

Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.


Assuntos
Proliferação de Células , Mitose , Neoplasias , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase , Humanos , Proliferação de Células/genética , Instabilidade Genômica , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , 60688/metabolismo , Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos
2.
Cell Tissue Res ; 392(3): 733-743, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988705

RESUMO

The non-receptor tyrosine kinase Src plays a key role in cell division, migration, adhesion, and survival. Src is overactivated in several cancers, where it transmits signals that promote cell survival, mitosis, and other important cancer hallmarks. Src is therefore a promising target in cancer therapy, but the underlying mechanisms are still uncertain. Here we show that Src is highly conserved across different species. Src expression increases during mitosis and is localized to the chromosomal passenger complex. Knockdown or inhibition of Src induces multipolar spindle formation, resulting in abnormal expression of the Aurora B and INCENP components of the chromosomal passenger complex. Molecular mechanism studies have found that Src interacts with and phosphorylates INCENP. This then leads to incorrect chromosome arrangement and segregation, resulting in cell division failure. Herein, Src and chromosomal passenger complex co-localize and Src inhibition impedes mitotic progression by inducing multipolar spindle formation. These findings provide novel insights into the molecular basis for using Src inhibitors to treat cancer.


Assuntos
Antineoplásicos , Genes src , Mitose , Proteínas Proto-Oncogênicas pp60(c-src) , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Citoesqueleto/metabolismo , Genes src/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Antineoplásicos/farmacologia
3.
J Biol Chem ; 298(6): 101939, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436470

RESUMO

Microtubule targeting agents (MTAs) are widely used cancer chemotherapeutics which conventionally exert their effects during mitosis, leading to mitotic or postmitotic death. However, accumulating evidence suggests that MTAs can also generate death signals during interphase, which may represent a key mechanism in the clinical setting. We reported previously that vincristine and other microtubule destabilizers induce death not only in M phase but also in G1 phase in primary acute lymphoblastic leukemia cells. Here, we sought to investigate and compare the pathways responsible for phase-specific cell death. Primary acute lymphoblastic leukemia cells were subjected to centrifugal elutriation, and cell populations enriched in G1 phase (97%) or G2/M phases (80%) were obtained and treated with vincristine. We found death of M phase cells was associated with established features of mitochondrial-mediated apoptosis, including Bax activation, loss of mitochondrial transmembrane potential, caspase-3 activation, and nucleosomal DNA fragmentation. In contrast, death of G1 phase cells was not associated with pronounced Bax or caspase-3 activation but was associated with loss of mitochondrial transmembrane potential, parylation, nuclear translocation of apoptosis-inducing factor and endonuclease G, and supra-nucleosomal DNA fragmentation, which was enhanced by inhibition of autophagy. The results indicate that microtubule depolymerization induces distinct cell death pathways depending on during which phase of the cell cycle microtubule perturbation occurs. The observation that a specific type of drug can enter a single cell type and induce two different modes of death is novel and intriguing. These findings provide a basis for advancing knowledge of clinical mechanisms of MTAs.


Assuntos
Apoptose , Leucemia-Linfoma Linfoblástico de Células Precursoras , Vincristina , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Vincristina/metabolismo , Vincristina/farmacologia , Vincristina/uso terapêutico , Proteína X Associada a bcl-2/metabolismo
4.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011730

RESUMO

Anthraquinone derivatives exhibit various biological activities, e.g., antifungal, antibacterial and in vitro antiviral activities. They are naturally produced in many fungal and plant families such as Rhamnaceae or Fabaceae. Furthermore, they were found to have anticancer activity, exemplified by mitoxantrone and pixantrone, and many are well known redox-active compounds. In this study, various nature inspired synthetic anthraquinone derivatives were tested against colon, prostate, liver and cervical cancer cell lines. Most of the compounds exhibit anticancer effects against all cell lines, therefore the compounds were further studied to determine their IC50-values. Of these compounds, 1,4-bis(benzyloxy)-2,3-bis(hydroxymethyl)anthracene-9,10-dione (4) exhibited the highest cytotoxicity against PC3 cells and was chosen for a deeper look into its mechanism of action. Based on flow cytometry, the compound was proven to induce apoptosis through the activation of caspases and to demolish the ROS/RNS and NO equilibrium in the PC3 cell line. It trapped cells in the G2/M phase. Western blotting was performed for several proteins related to the effects observed. Compound 4 enhanced the production of PARP and caspase-3. Moreover, it activated the conversion of LC3A/B-I to LC3A/B-II showing that also autophagy plays a role in its mechanism of action, and it caused the phosphorylation of p70 s6 kinase.


Assuntos
Antraquinonas/química , Antraquinonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases/metabolismo , Emodina/química , Emodina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Mitose/efeitos dos fármacos
5.
J Nat Prod ; 85(1): 136-147, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35026948

RESUMO

Natural products, which are enzymatically biosynthesized, have a broad range of biological activities. In particular, many flavonoids are known to contribute to human health with low toxicity. We previously reported that novel benzo[b]thiophenyl (BT) flavones with a 10π-electron BT ring B replacing the usual 6π-electron phenyl ring showed potent antiproliferative activity against human tumor cell lines. Interestingly, the activity profiles against cell cycle progression of the BT-flavones totally changed depending on the combination of substituents at the C-3 and C-5 positions. This finding encouraged an extension of these studies on the impact of BT to related flavonoids, such as chalcones, isoflavones, and aurones. Accordingly, 10 isoflavones, 29 chalcones, and four aurones were synthesized and evaluated for antiproliferative activity against five human tumor cell lines including a multi-drug-resistant cell line. Among these compounds, BT-isoflavone 7, BT-chalcones 48, 52, 57, 66, and 77, and BT-aurone 80 displayed significant antiproliferative effects against all tested tumor cell lines. The structure-antiproliferative activity relationships clearly demonstrated the importance of BT instead of phenyl as ring B for the isoflavone and chalcones, but not the aurones. Flow cytometry and immunocytochemical studies demonstrated that the active BT-flavonoids led to cell cycle arrest at the prometaphase by induction of multipolar spindle formation. The present studies should contribute greatly to the synthesis and functional analysis of biologically active flavonoid derivatives for chemical space expansion.


Assuntos
Flavonoides/química , Mitose/efeitos dos fármacos , Tiofenos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Elétrons , Flavonoides/farmacologia , Humanos , Relação Estrutura-Atividade
6.
BMC Plant Biol ; 22(1): 46, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35065609

RESUMO

BACKGROUND: Land plants respond to drought and salinity by employing multitude of sophisticated mechanisms with physiological and developmental consequences. Abscisic acid-mediated signaling pathways have evolved as land plant ancestors explored their habitats toward terrestrial dry area, and now play major roles in hyperosmotic stress responses in flowering plants. Green algae living in fresh water habitat do not possess abscisic acid signaling pathways but need to cope with increasing salt concentrations or high osmolarity when challenged with adverse aquatic environment. Hyperosmotic stress responses in green algae are largely unexplored. RESULTS: In this study, we characterized hyperosmotic stress-induced cytoskeletal responses in Chlamydomonas reinhardtii, a fresh water green algae. The Chlamydomonas PROPYZAMIDE-HYPERSENSITEVE 1 (PHS1) tubulin kinase quickly and transiently phosphorylated a large proportion of cellular α-tubulin at Thr349 in G1 phase and during mitosis, which resulted in transient disassembly of microtubules, when challenged with > 0.2 M sorbitol or > 0.1 M NaCl. By using phs1 loss-of-function algal mutant cells, we demonstrated that transient microtubule destabilization by sorbitol did not affect cell growth in G1 phase but delayed mitotic cell cycle progression. Genome sequence analyses indicate that PHS1 genes evolved in ancestors of the Chlorophyta. Interestingly, PHS1 genes are present in all sequenced genomes of freshwater Chlorophyta green algae (including Chlamydomonas) but are absent in some marine algae of this phylum. CONCLUSION: PHS1-mediated tubulin phosphorylation was found to be partly responsible for the efficient stress-responsive mitotic delay in Chlamydomonas cells. Ancient hyperosmotic stress-triggered cytoskeletal remodeling responses thus emerged when the PHS1 tubulin kinase gene evolved in freshwater green algae.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Microtúbulos/metabolismo , Pressão Osmótica/fisiologia , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/metabolismo , Técnicas de Cultura de Células/métodos , Divisão Celular , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Clorófitas/genética , Fase G1/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fosforilação , Proteínas de Plantas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estresse Salino , Sorbitol/farmacologia , Treonina
7.
Cells ; 11(2)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053421

RESUMO

Recurrence in hepatocellular carcinoma (HCC) after conventional treatments is a crucial challenge. Despite the promising progress in advanced targeted therapies, HCC is the fourth leading cause of cancer death worldwide. Radionuclide therapy can potentially be a practical targeted approach to address this concern. Rhenium-188 (188Re) is a ß-emitting radionuclide used in the clinic to induce apoptosis and inhibit cell proliferation. Although adherent cell cultures are efficient and reliable, appropriate cell-cell and cell-extracellular matrix (ECM) contact is still lacking. Thus, we herein aimed to assess 188Re as a potential therapeutic component for HCC in 2D and 3D models. The death rate in treated Huh7 and HepG2 lines was significantly higher than in untreated control groups using viability assay. After treatment with 188ReO4, Annexin/PI data indicated considerable apoptosis induction in HepG2 cells after 48 h but not Huh7 cells. Quantitative RT-PCR and western blotting data also showed increased apoptosis in response to 188ReO4 treatment. In Huh7 cells, exposure to an effective dose of 188ReO4 led to cell cycle arrest in the G2 phase. Moreover, colony formation assay confirmed post-exposure growth suppression in Huh7 and HepG2 cells. Then, the immunostaining displayed proliferation inhibition in the 188ReO4-treated cells on 3D scaffolds of liver ECM. The PI3-AKT signaling pathway was activated in 3D culture but not in 2D culture. In nude mice, Huh7 cells treated with an effective dose of 188ReO4 lost their tumor formation ability compared to the control group. These findings suggest that 188ReO4 can be a potential new therapeutic agent against HCC through induction of apoptosis and cell cycle arrest and inhibition of tumor formation. This approach can be effectively combined with antibodies and peptides for more selective and personalized therapy.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Radioisótopos/farmacologia , Rênio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Camundongos Nus , Mitose/efeitos dos fármacos , Fenótipo , Tolerância a Radiação/efeitos dos fármacos
8.
Biomed Pharmacother ; 147: 112645, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051862

RESUMO

Plants are a rich source for bioactive compounds. However, plant extracts can harbor a mixture of bioactive molecules that promote divergent phenotypes and potentially have confounding effects in bioassays. Even with further purification and identification, target deconvolution can be challenging. Corynoline and acetylcorynoline, are phytochemicals that were previously isolated through a screen for compounds able to induce mitotic arrest and polyploidy in oncogene expressing retinal pigment epithelial (RPE) cells. Here, we shed light on the mechanism by which these phytochemicals can attack human cancer cells. Mitotic arrest was coincident to the induction of centrosome amplification and declustering, causing multi-polar spindle formation. Corynoline was demonstrated to have true centrosome declustering activity in a model where A549 cells were chemically induced to have more than a regular complement of centrosomes. Corynoline could inhibit the centrosome clustering required for pseudo-bipolar spindle formation in these cells. The activity of AURKB, but not AURKA or polo-like kinase 4, was diminished by corynoline. It only partially inhibited AURKB, so it may be a partial antagonist or corynoline may work upstream on an unknown regulator of AURKB activity or localization. Nonetheless, corynoline and acetylcorynoline inhibited the viability of a variety of human cancer derived cell lines. These phytochemicals could serve as prototypes for a next-generation analog with improved potency, selectivity or in vivo bioavailability. Such an analog could be useful as a non-toxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Assuntos
Aurora Quinase B/efeitos dos fármacos , Alcaloides de Berberina/farmacologia , Mitose/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Poliploidia , Células A549 , Apoptose/efeitos dos fármacos , Aurora Quinase A/efeitos dos fármacos , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Humanos
9.
Angew Chem Int Ed Engl ; 61(9): e202115846, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34958711

RESUMO

Eg5 is a kinesin motor protein that is responsible for bipolar spindle formation and plays a crucial role during mitosis. Loss of Eg5 function leads to the formation of monopolar spindles, followed by mitotic arrest, and subsequent cell death. Several cell-permeable small molecules have been reported to inhibit Eg5 and some have been evaluated as anticancer agents. We now describe the design, synthesis, and biological evaluation of photoswitchable variants with five different pharmacophores. Our lead compound Azo-EMD is a cell permeable azobenzene that inhibits Eg5 more potently in its light-induced cis form. This activity decreased the velocity of Eg5 in single-molecule assays, promoted formation of monopolar spindles, and led to mitotic arrest in a light dependent way.


Assuntos
Compostos Azo/farmacologia , Cinesinas/antagonistas & inibidores , Mitose/efeitos dos fármacos , Compostos Azo/síntese química , Compostos Azo/química , Humanos , Cinesinas/metabolismo , Processos Fotoquímicos , Fuso Acromático/efeitos dos fármacos
10.
J Toxicol Environ Health A ; 85(4): 131-142, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34612163

RESUMO

Melanoma is the most aggressive type of skin cancer, and thus it is important to develop new drugs for its treatment. The present study aimed to examine the antitumor effects of solamargine a major alkaloid heteroside present in Solanum lycocarpum fruit. In addition solamargine was incorporated into nanoparticles (NP) of yttrium vanadate functionalized with 3-chloropropyltrimethoxysilane (YVO4:Eu3+:CPTES:SM) to determine antitumor activity. The anti-melanoma assessment was performed using a syngeneic mouse melanoma model B16F10 cell line. In addition, systemic toxicity, nephrotoxic, and genotoxic parameters were assessed. Solamargine, at doses of 5 or 10 mg/kg/day administered subcutaneously to male C57BL/6 mice for 5 days, decreased tumor size and frequency of mitoses in tumor tissue, indicative of a decrease in cell proliferation. Treatments with YVO4:Eu3+:CPTES:SM significantly reduced the number of mitoses in tumor tissue, associated with no change in tumor size. There were no apparent signs of systemic toxicity, nephrotoxicity, and genotoxicity initiated by treatments either with solamargine alone or plant alkaloid incorporated into NP. The animals treated with YVO4:Eu3+:CPTES:SM exhibited significant increase in spleen weight accompanied by no apparent histological changes in all tissues examined. In addition, animals treated with solamargine (10 mg/kg/day) and YVO4:Eu3+:CPTES:SM demonstrated significant reduction in hepatic DNA damage which was induced by tumor growth. Therefore, data suggest that solamargine may be considered a promising candidate in cancer therapy with no apparent toxic effects.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Alcaloides de Solanáceas/farmacologia , Animais , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Dano ao DNA , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Nanopartículas/administração & dosagem , Silanos/química , Alcaloides de Solanáceas/toxicidade , Ítrio/química
11.
Sci Rep ; 11(1): 23665, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880347

RESUMO

We reveal the effects of a new microtubule-destabilizing compound in human cells. C75 has a core thienoisoquinoline scaffold with several functional groups amenable to modification. Previously we found that sub micromolar concentrations of C75 caused cytotoxicity. We also found that C75 inhibited microtubule polymerization and competed with colchicine for tubulin-binding in vitro. However, here we found that the two compounds synergized suggesting differences in their mechanism of action. Indeed, live imaging revealed that C75 causes different spindle phenotypes compared to colchicine. Spindles remained bipolar and collapsed after colchicine treatment, while C75 caused bipolar spindles to become multipolar. Importantly, microtubules rapidly disappeared after C75-treatment, but then grew back unevenly and from multiple poles. The C75 spindle phenotype is reminiscent of phenotypes caused by depletion of ch-TOG, a microtubule polymerase, suggesting that C75 blocks microtubule polymerization in metaphase cells. C75 also caused an increase in the number of spindle poles in paclitaxel-treated cells, and combining low amounts of C75 and paclitaxel caused greater regression of multicellular tumour spheroids compared to each compound on their own. These findings warrant further exploration of C75's anti-cancer potential.


Assuntos
Isoquinolinas/farmacologia , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Polos do Fuso/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Colchicina/farmacologia , Humanos , Isoquinolinas/química , Microtúbulos/metabolismo , Tiofenos/química
12.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885726

RESUMO

Previously, we reported the in vitro growth inhibitory effect of diarylpentanoid BP-M345 on human cancer cells. Nevertheless, at that time, the cellular mechanism through which BP-M345 exerts its growth inhibitory effect remained to be explored. In the present work, we report its mechanism of action on cancer cells. The compound exhibits a potent tumor growth inhibitory activity with high selectivity index. Mechanistically, it induces perturbation of the spindles through microtubule instability. As a consequence, treated cells exhibit irreversible defects in chromosome congression during mitosis, which induce a prolonged spindle assembly checkpoint-dependent mitotic arrest, followed by massive apoptosis, as revealed by live cell imaging. Collectively, the results indicate that the diarylpentanoid BP-M345 exerts its antiproliferative activity by inhibiting mitosis through microtubule perturbation and causing cancer cell death, thereby highlighting its potential as antitumor agent.


Assuntos
Antineoplásicos/química , Produtos Biológicos/química , Mitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Segregação de Cromossomos , Células HCT116 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microtúbulos/química , Microtúbulos/efeitos dos fármacos , Mitose/genética , Neoplasias/genética
13.
Sci Rep ; 11(1): 23490, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873207

RESUMO

Paclitaxel is an anti-microtubule agent that has been shown to induce cell death in gastric cancer. However, the detailed mechanism of action is unclear. In this study, we reveal that the paclitaxel-induced cell death mechanism involves mitotic catastrophe, autophagy and apoptosis in AGS cells. Paclitaxel induced intrinsic apoptosis by activating caspase-3, caspase-9 and PARP. In addition, the significant increase in autophagy marker LC3B-II, together with Atg5, class III PI3K and Beclin-1, and the down-regulation of p62 following paclitaxel treatment verified that paclitaxel induced autophagy. Further experiments showed that paclitaxel caused mitotic catastrophe, cell cycle arrest of the accumulated multinucleated giant cells at the G2/M phase and induction of cell death in 24 h. Within 48 h, the arrested multinucleated cells escaped mitosis by decreasing cell division regulatory proteins and triggered cell death. Cells treated with paclitaxel for 48 h were grown in fresh medium for 24 h and checked for CDC2, CDC25C and lamin B1 protein expressions. These proteins had decreased significantly, indicating that the remaining cells became senescent. In conclusion, it is suggested that paclitaxel-induced mitotic catastrophe is an integral part of the cell death mechanism, in addition to apoptosis and autophagy, in AGS cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/farmacologia , Caspases/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
14.
Cells ; 10(12)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34943948

RESUMO

Glioblastoma (GBM) is the most common brain tumor in adults, which is very aggressive, with a very poor prognosis that affects men twice as much as women, suggesting that female hormones (estrogen) play a protective role. With an in silico approach, we highlighted that the expression of the membrane G-protein-coupled estrogen receptor (GPER) had an impact on GBM female patient survival. In this context, we explored for the first time the role of the GPER agonist G-1 on GBM cell proliferation. Our results suggested that G-1 exposure had a cytostatic effect, leading to reversible G2/M arrest, due to tubulin polymerization blockade during mitosis. However, the observed effect was independent of GPER. Interestingly, G-1 potentiated the efficacy of temozolomide, the current standard chemotherapy treatment, since the combination of both treatments led to prolonged mitotic arrest, even in a temozolomide less-sensitive cell line. In conclusion, our results suggested that G-1, in combination with standard chemotherapy, might be a promising way to limit the progression and aggressiveness of GBM.


Assuntos
Ciclopentanos/farmacologia , Glioblastoma/tratamento farmacológico , Quinolinas/farmacologia , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Temozolomida/farmacologia , Tubulina (Proteína)/genética , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Mitose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819364

RESUMO

Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase. Micronuclei consistently recruited cGAS without activating it. Instead, IFN signaling correlated with formation of cGAS-coated chromatin bridges that were selectively generated by microtubule stabilizers and MPS1 inhibitors. cGAS activation by chromatin bridges was suppressed by drugs that prevented cytokinesis. We confirmed cGAS activation by chromatin bridges in cancer lines that are unable to secrete IFN by measuring paracrine transfer of 2'3'-cGAMP to fibroblasts, and in mouse cells. We propose that cGAS is selectively activated by self-chromatin when it is stretched in chromatin bridges. Immunosurveillance of cells that fail mitosis, and antitumor actions of taxanes and MPS1 inhibitors, may depend on this effect.


Assuntos
Cromatina/fisiologia , Mitose/fisiologia , Nucleotidiltransferases/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Humanos , Interferon Tipo I/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/fisiologia , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/fisiologia , Transdução de Sinais
16.
Mol Cell ; 81(24): 5007-5024.e9, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34767771

RESUMO

As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , Neoplasias Colorretais/enzimologia , DNA Topoisomerases Tipo I/metabolismo , Fase G1 , Mitose , RNA Polimerase II/metabolismo , Transcrição Gênica , Proliferação de Células/efeitos dos fármacos , Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Topoisomerases Tipo I/genética , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Inibidores de MTOR/farmacologia , Mitose/efeitos dos fármacos , RNA Polimerase II/genética
17.
Life Sci ; 287: 120105, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34756929

RESUMO

AIM: Analysis of the anticancer and antimitotic activity of the plant derived alkaloid securinine along with its effect on the organization of cellular microtubules as well as its binding with purified goat brain tubulin in-vitro. MATERIALS AND METHODS: The cytotoxicity of securinine on different cell lines was conducted using SRB assay. The effect of securinine on the cellular microtubules was analyzed using immunofluorescence microscopy. The binding of securinine on purified goat brain tubulin was evaluated using fluorescent spectroscopy. KEY FINDINGS: Securinine effectively prevented the proliferation of cervical, breast and lung cancer cells with an IC50 of 6, 10 and 11 µM respectively and induced minimal toxicity in HEK cell line. Securinine at concentrations higher than IC50 induced significant depolymerization in interphase and mitotic microtubules and it suppressed the reassembly of cold depolymerized spindle microtubules in HeLa cells. In the wound healing assay, securinine effectively suppressed the migration of HeLa cells to close the wound. Securinine bound to tubulin with a Kd of 9.7 µM and inhibited the assembly of tubulin into microtubules. The treatment with securinine induced a mitochondrial dependent ROS response in HeLa cells which enhanced the cytotoxic effect of securinine. The result from gene expression studies indicates that securinine induced apoptosis in MCF-7 cells through p53 dependent pathway. SIGNIFICANCE: Considering the strong anticancer and anti-metastatic property and low toxicity in non-malignant cell lines, we suggest that securinine can be used as a chemotherapeutic drug either alone or in combination with other known anticancer molecules.


Assuntos
Antineoplásicos/metabolismo , Azepinas/metabolismo , Compostos Heterocíclicos de Anel em Ponte/metabolismo , Lactonas/metabolismo , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Neoplasias/metabolismo , Piperidinas/metabolismo , Tubulina (Proteína)/metabolismo , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Azepinas/farmacologia , Azepinas/uso terapêutico , Relação Dose-Resposta a Droga , Células HEK293 , Células HeLa , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Compostos Heterocíclicos de Anel em Ponte/uso terapêutico , Humanos , Lactonas/farmacologia , Lactonas/uso terapêutico , Células MCF-7 , Microtúbulos/metabolismo , Mitose/fisiologia , Neoplasias/tratamento farmacológico , Piperidinas/farmacologia , Piperidinas/uso terapêutico
18.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624217

RESUMO

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Mitose , Células Neoplásicas Circulantes/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Indóis/farmacologia , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Mitose/efeitos dos fármacos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenilacetatos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estruturas R-Loop , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Elongação da Transcrição Genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681807

RESUMO

Epithelioid sarcoma (ES) is a rare disease representing <1% of soft tissue sarcomas. Current therapies are based on anthracycline alone or in combination with ifosfamide or other cytotoxic drugs. ES is still characterized by a poor prognosis with high rates of recurrence. Indeed, for years, ES survival rates have remained stagnant, suggesting that conventional treatments should be revised and improved. New therapeutic approaches are focused to target the key regulators of signaling pathways, the causative markers of tumor pathophysiology. To this end, we selected, among the drugs to which an ES cell line is highly sensitive, those that target signaling pathways known to be dysregulated in ES. In particular, we found a key role for GSK-3ß, which results in up-regulation in tumor versus normal tissue samples and associated to poor prognosis in sarcoma patients. Following this evidence, we evaluated CHIR99021, a GSK-3 inhibitor, as a potential drug for use in ES therapy. Our data highlight that, in ES cells, CHIR99021 induces cell cycle arrest, mitotic catastrophe (MC) and autophagic response, resulting in reduced cell proliferation. Our results support the potential efficacy of CHIR99021 in ES treatment and encourage further preclinical and clinical studies.


Assuntos
Autofagia/efeitos dos fármacos , Mitose/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Sarcoma/patologia , Neoplasias de Tecidos Moles/patologia , Adulto , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/fisiologia , Humanos , Moduladores de Mitose/farmacologia , Sarcoma/mortalidade , Neoplasias de Tecidos Moles/mortalidade , Análise de Sobrevida
20.
Cell Death Dis ; 12(10): 893, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593753

RESUMO

Uncontrolled mitosis is one of the most important features of cancer, and mitotic kinases are thought to be ideal targets for anticancer therapeutics. However, despite numerous clinical attempts spanning decades, clinical trials for mitotic kinase-targeting agents have generally stalled in the late stages due to limited therapeutic effectiveness. Alisertib (MLN8237) is a promising oral mitotic aurora kinase A (AURKA, Aurora-A) selective inhibitor, which is currently under several clinical evaluations but has failed in its first Phase III trial due to inadequate efficacy. In this study, we performed genome-wide CRISPR/Cas9-based screening to identify vulnerable biological processes associated with alisertib in breast cancer MDA-MB-231 cells. The result indicated that alisertib treated cancer cells are more sensitive to the genetic perturbation of oxidative phosphorylation (OXPHOS). Mechanistic investigation indicated that alisertib treatment, as well as other mitotic kinase inhibitors, rapidly reduces the intracellular ATP level to generate a status that is highly addictive to OXPHOS. Furthermore, the combinational inhibition of mitotic kinase and OXPHOS by alisertib, and metformin respectively, generates severe energy exhaustion in mitotic cells that consequently triggers cell death. The combination regimen also enhanced tumor regression significantly in vivo. This suggests that targeting OXPHOS by metformin is a potential strategy for promoting the therapeutic effects of mitotic kinase inhibitors through the joint targeting of mitosis and cellular energy homeostasis.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Mitose , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Aurora Quinase A/metabolismo , Azepinas/farmacologia , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Citosol/metabolismo , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Feminino , Homeostase/efeitos dos fármacos , Humanos , Metformina/farmacologia , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitose/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...